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J. Phys. A: Math. Gen., 13 (1980) 161-171. Printed in Great Britain 

Generalised Bogoliubov transformation coefficients for 
para-Bose states 

H E De Meyer? and G Vanden Berghe 
Seminarie voor Wiskundige Natuurkunde, RUG Krijgslaan 2714.9, B-9000 Gent, 
Belgium 

Received 5 April 1979 

Abstract. Simple expressions are obtained for the coefficients which connect a para-Bose 
state containing an arbitrary number of quasiparticles with its transformed state under a real 
boson and a complex generalised Bogoliubov transformation. 

1. Introduction 

There have appeared several papers (Kelemen 1975, Rashid 1975, Tanabe 1973, 
Witschel 1975) in which closed formulae for the real boson Bogoliubov transformation 
coefficients were derived. Very recently the transformation b = Aa + pa' between two 
sets of boson operators with A and p complex has been discussed (Tikochinsky 1978). 
Also, closed formulae are calculated for the transformation brackets connecting base 
states of the two sets. All these derivations are performed under the assumption that 
the creation and annihilation operators involved satisfy the usual commutation relation 

In the present paper we discuss the derivation of simple expressions for the 
Bogoliubov transformation brackets between para-Bose states. For these specific 
states the commutation relation [a, a'] = 1 is replaced by the generalised relation 
[a, HI = a, where H is the Hamiltonian of the system, i.e. $(U++ a'a). The properties 
of the para-Bose states which have recently been presented by Sharma et a1 (1978) are 
summarised in Q 2. In § 3 the brackets for the real Bogoliubov transformation are 
obtained by making use of the methods previously developed by Kelemen (1975) and 
Rashid (1975). The extension of the methods to a complex generalised Bogoliubov 
transformation is performed in § 4. It is finally shown that, under certain conditions, 
previously derived expressions can be retrieved. 

[a, a'] = 1. 

2. Para-Bose number states 

Particle operators satisfying the general commutation relation 

with 
[a, HI = a, 

H=$(a'a +aa+), 

t Aangesteld Navorser bij het NFWO (Belgium). 
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have been referred to as para-Bose operators (Jordan et ai 1963, Bogoliubov et ai 
1975, Kamefuchi and Takahashi 1962, Sharma et a1 1978). The relation (2.1) replaces 
for para-Bose states the usual commutation relation, 

[a, a+]= 1, (2.3) 

characteristic of Bose-Einstein quantisation. 

readily finds (Sharma et a1 1978) that 
From the fact that a+ is the Hermitian adjoint of a, and making use of (2.1), one 

[a+, HI = -a+, 

[aZn, a+] = 2naZn-l, 

[a+'", a]  = -2na , 
[azn+*, a+] = (2n +[a,  a+])a2", 

[a 

+2n-1 

+ 2 n + 1  , a ] =  -a+2n(2n +[a,  U + ] ) .  

The commutator [a, a'] commutes with a*, a+2 and H but not with a or a+. Following 
Sharma et a1 (1978) the lowest eigenvalue of H is denoted by ho. The excited states of 
the Hamiltonian H (2.2) have energy eigenvalues differing by integers: 

ho+ 1, ho + 2, . . . , ho + n, . . . . 
The parameter ho is completely arbitrary, as long as it is positive. Each representation is 
labelled by this parameter ho. In this context the following number operator is usually 
introduced: 

N =H - ho=$(a'a +uu+) - ho, (2.9) 

N n ) ,  = nln>, (n =o ,  1 ,2 , .  . , ) ,  (2.10) 

and the number states are defined by 

It is easy to prove that the para-Bose number states satisfy the following properties 
(Sharma et a1 1978): 

Furthermore, one can introduce the completeness relation 

(2.1 1) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

and the orthogonality relation 

,(nlm>h, = 6 l m -  
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Taking into account these relations, the normalised number para-Bose states can also 
be denoted as 

(2.19) 

where [ k ]  stands for the largest integer smaller than or equal to k. When ho = 1 one 
recovers the familiar case of the ordinary oscillator, in which case (cf equations (2.15) 
and (2.16)) the commutator [a, a+]  becomes unity. 

3. Bogoliubov transformation brackets for para-Bose states 

On account of the importance of the Bogoliubov transformation in the theoretical 
treatments of superfluidity (Bogoliubov 1947) and superconductivity (Bogoliubov 
1958a, b), there has been interest in obtaining an explicit expression for the trans- 
formation coefficients which connect a Fock state containing an arbitrary number of 
(quasi-) particles with its transform under such transformation (Tanabe 1973, Keleman 
1975, Witschel 1975, Rashid 1975). The aim of the present paper is to derive these 
Bogoliubov boson-transformation brackets in the para-Bose case. In such a trans- 
formation the new para-Bose creation b' and annihilation b operators are related to the 
old ones by 

b = ua + vu+ = esa e-S, (3.1) 

(3.2) s + -s b + = u a + + v a = e  a e , 

and the transformed Hamiltonian can be written as 

H' = eSH e-' = $(b'b + bbc). (3.3) 

[b, H'] = b and [b', HI]= -b+, (3.4) 

Requiring that b and b+ are also of the para-Bose type, i.e. 

gives the supplementary condition 
u2-U 2 = l .  (3.5) 

For the Bogoliubov boson transformation one introduces for the operator S the 
following form (Tanabe 1973): 

s = -x(a+*-a2)/2 = -s+, (3.6) 

U = cosh x and v = sinh x .  (3.7) 

and the real parameters U and U are then given by 

For the para-Bose case the operator form (3.6) still remains valid, which is due to the 
fact that S is quadratic in a' and a, and that the commutation relations [a2", a+] and 
[a+'", a] yield results not depending upon the choice (2.3). 

In deriving the transformation brackets several methods have been used. Tanabe 
(1973) developed an indirect method by introducing the eigenfunctions of a linear 
harmonic oscillator. This method is based on the explicit use of the commutation 
relation (2.3) and hence is not suitable for the para-Bose case. The other methods 
discussed (Keleman 1975, Witschel 1975, Rashid 1975) determine the transformation 
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coefficients in a direct way and can all be applied to the para-Bose case. Since 
Keleman's and Witschel's methods exhibit great resemblance, we shall restrict 
ourselves to a discussion of the first one. 

3.1. The method of Rashid (1975) 

We look for an analytic expression of 

G ~ ; I ( x )  = a(k! es!l)b. (3.8) 
Due to the special form of (equation (2.19)) we treat separately the cases where k 
and 1 are both even or both odd. Moreover, G k ; l ( x )  = 0 if k f 1 is odd. Following 
Rashid (1975),  functions Hk;l(x) are introduced as follows: 

(3.9) 

and 

Using equations (2.5), (2.6), (2.19), (3.1), (3.2) and (3.8),  one obtains 

2 n H 2 , , ; ~ ~ ( x )  = cosh x H ~ ~ - ~ ; z ~ - ~ ( x )  - 2 ( m  + ho) sinh X H ~ ~ - I ; Z ~ + I ( X ) ,  (3.11) 

2 m H ~ , , ; ~ ~ ( x )  =cosh X H Z ~ - I ; Z ~ - I ( X )  + 2 ( n  + ho) sinh x H z ~ + I ; z ~ - I ( x ) ,  (3.12) 

2(n  +hO)H2n+1;2m+l(X) =cosh x&n;2m(x)-2(m + 1)  sinh X H 2 n , 2 m + 2 ( X ) ,  (3.13) 

2 ( m  + hO)H2n+1;Zm+l(X) = cosh xHzn;zm(x)+2(n  + 1)  sinh X H Z ~ + Z ; Z ~ ( X ) .  (3.14) 

The above relations have the indices 2n and 2 m  both increasing and decreasing. In 
order to evolve a situation where 2n and 2 m  are both non-increasing, we substitute, in 
equation (3,11),  the expression obtained from (3.14) for 2 ( m  + hO)H2n+1;Zm+1(X). This 
gives 

2n cosh x H Z ~ ; Z ~ ( X )  = H 2 n - 1 ; 2 m - i ( ~ ) - ~ i n h  XH2"-2;2m(X)* (3.15) 

In an analogous way one also obtains 

2 m  cosh x H ~ , , ; ~ , ~ ( x )  = H * n - 1 ; 2 m - 1 ( ~ )  + sinh x H z ~ ; ~ ~ - z ( x ) ,  (3.16) 

(3.17) 

(3.18) 
2(n + ho) cosh XHZn+1;2m+l (X)  = H2n;2m(x) -sinh xH2n-1;2m+l(x), 

2 ( m  + ho) cosh X H Z ~ + I ; ~ ~ + I ( X )  = Hzn;zm(x)+Sinh XH2n+1;2m-l (X) .  

It is physically evident that for n > 0 

X f l ; l ( X )  = H k ; - n ( X )  = 0. (3.19) 

Thus the recursion relations should, in principle, give us all Hk;l(x) in terms of two 
starting parameters Ho;o(x) and H I i l ( x ) .  Indeed, subtracting (3.15) from (3.16) gives 

(3.20) 2 ( m  - n)H2,;2m(x)  = tanh X ( H 2 n ; 2 m - Z ( X )  + H Z n - 2 ; 2 m ( X ) ) ,  

from which it follows that 

H2n;0(x)  = [ ( - l ) n / n ! ] ( i  tanh ~ ) " H o ; o ( x )  (3.21) 
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and 

HO;zm(x) = ( l /m!) ($  tanh x)mHo,o(x) .  

From (3.17) and (3.18) one finds that 
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(3.22) 

(3.25) 

From these arguments it is clear that all Hk;l(x)  (for 1 and k both even or odd) can be 
given in terms of a single starting parameter Hoi0(x ) .  

By defining a generating function for k and 1 both even, 
OD 

HE(u, b; x ) =  H2n;2m(X)a2"bzm, 
n,m=O 

and another generating function for k and 1 both odd, 

OD Ho(a, b; x ) =  C H2n+l;Zm+l(X)a 2(n+ho)b2(m+ho) , 
n,m =O 

equations (3.15) and (3.17) become 
1-2h 2-2h cosh xaH,(a, b ; x ) / ~ u  = -U sinh X H E ( U ,  b ;  X )  + U "b "Ho(U, b; x ) ,  
2ho-1 2h cosh xaHo(a,  6;  x ) / a a  = -U sinh xHo(u ,  b; x )  + U b "HE(u, 6;  x ) .  

(3.26) 

(3.27) 

It has to be remarked that by setting ho = $in accordance with the Bose case, it is the sum 
&(U, b ;  x )  +Ho(a, b;  x )  which reduces to Rashid's (1975) generating function 
H(a,  b; x ) .  From the set of linear differential equations two second-order differential 
equations can be extracted, i.e. 

cosh xa2HE(a, b;  x ) /da2+{2a  sinh x +[(2ho- l ) /a ]  cosh x } ~ H E ( u ;  b; x ) / &  

+ (2ho sinh x + a 2  tanh x sinh x - b2/cosh x ) H E ( a ,  b ;  x )  = 0 ,  

and 

cosh xazHo(a, b; x)/aa2+{2a sinh x -[(2ho- l ) /a ]  cosh x}dHo(a, b; x ) / a a  

+[2(l- ho) sinh x + a 2  tanh x sinh x - b2/cosh x ] H o ( a ,  b; x )  = 0. 

Making the substitutions 

&(a, 6;  x )  = exp(-$a2 tanh x)al-hog(a,  b ;  x )  (3.28) 

and 

Ho(a, b ;  x )  = exp(-+a* tanh x )aho f (a ,  b; x ) ,  (3.29) 
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the following differential equations are obtained: 

and 

b; x) = 0. 

(3.30) 

(3.31) 

Solutions for these equations are the modified Bessel functions I and K (Abramowitz 
and Stegun 1965). Since by virtue of (3.26) ((3.27)) &(U, b; x) (&(a, b; x)), and 
therefore also a'-hog(a, 6 ;  x )  (ahof(a,  b; x)), is required to be an even (odd) function of 
a, it follows from the series development of the modified Bessel function of the first 
kind, 

1 (zj2k+v (3.32) 
00 

Zo k !qv + k + 1) 2 9 

that the particular solution of (3.30) ((3.31)) satisfying such a condition is given by 

g(a, b; x ) =  CE(b; x)I,,,,-l(ab/cosh X )  

( f ( ~ ,  b; X) = Co(b; x)Ik(ab/cosh x)). 

(3.33) 

(3.34) 

Substituting (3.33) and (3.34) respectively in (3.28) and (3.29), considering the 
definitions (3.26) and (3.27) and taking the limit for a going to 0 of HE(u, b; x)  and 
(Ho(a, b ; x)/aZho), the following expressions for the integration constants are obtained: 

CE(b; x) = r(ho)(2 cosh x)ho-lbl-ho exp($ tanh b2)HoiO(x) (3.35) 

(3.36) 

where explicit use has been made of expressions (3.22), (3.24) and (3.25). Finally we 
have to compute HO,o(x). For this purpose we differentiate the definition of Ho;o(x) 
with respect to x to arrive at 

and 
Co(b; x )  = r(h0)(2 cosh x)ho-lbho exp($ tanh bZ)Ho;o(x), 

dHo;o(x)/dx = 2hoH~;o(x);  

however from (3.21) it follows that 

HZ;~(X) = -4 tanh X H ~ ; ~ ( X ) .  

The above two equations result in 

Hoi0(x) = (cosh X ) - ~ O ,  (3.37) 
since HoLO(O) = 1 by definition. 

generating functions take the form 
Substituting (3.33)-(3.37) into (3.28) and (3.29) and taking into account (3.32), the 

aZkbzk(2  cosh x) - '~  
&(U,  b; x) = r(ho)(cosh X ) - ~ O  exp[$ tanh(b'- a2)] , (3.38) 

k = O  k!r(ho+ k )  
and 

(3.39) 
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Expanding these generating functions in powers of a and b we arrive at 

GZniZm(x) = (m!n!r(m + ho)r(n + ho))'/'(cosh 

and 

G Z ~ + I ; Z ~ + I ( X )  = (m ! n ! r ( m  + ho + l ) r (n  + ho + 1))'/2(cosh x ) - ( ~ + " + ~ ~ + ' )  

min(m.n) (-l)"-&(sinh x ) ~ + " - ' ~  
x c  k - 0  k ! ( m - k ) ! ( n - k ) ! r ( h o + k + l ) '  

(3.40) 

(3.41) 

Note that for ho = $ (3.40) and (3.41) reduce to the previously published results (Tanabe 
1973, Kelemen 1975, Witschel 1975, Rashid 1975). 

3.2. The method of Kelemen (1975) 

The applicability of Kelemen's method to the present problem results from the fact that 
after having introduced operators (-1, & according to 

[-1 = a+, 51 = a, (3.42) 

it is easily deduced with the help of (2.5) and (2.6) that 

[tt, 521 = 2a(5-151+ 515-1) 

[e, 5-151 + 515-11 = 4 4 :  
(a = *l), (3.43) 

proving that the algebra of operators 52, 5!a and (-I& + &5-1 is closed. From (3.43) it 
is straightforward to derive the commutators 

[exp(S-1€1+ t1t-A 5tI = (e-4aF - 13~2 exp[F(5-151+ 515-1)I, 

Cexp(F&), t - ~ +  515-13 = 4 a C P  exp(Ftt 1, 
Cexp(Ft%), [:,I = (2a~(t-151 + 5 1 5 - 1 ) + 4 ~ ~ 1 % )  exp(Ftt), 

which in their turn serve as a basis for proving that the operator exp S with S given by. 
(3.6), can be factorised as 

e' = exp[ax((f - 52,)/2] = exp($a tanh x z ? )  

x exp[$a In cosh x(5-151 +515-1)] exp(-$a tanh x t ! , ) ,  (3.44) 

where a may be chosen equal to +1 or -1. It is only in the particular Bose case for which 
the equality [a, a'] = 1 holds, that one recovers from (3.44) the result obtained 
previously by Kelemen (1975) and Witschel (1975). 

To obtain finite-form matrix elements of the operator exp S in the para-Bose 
occupation number representation (2.19), a has to be chosen equal to -1 in the 
right-hand side of (3.44), whereafter on account of the orthogonality property (2.18) it 
is found that 

G 2 n ; Z m ( ~ )  = [m! n! r ( m  + ho)r(n + ho)]1'2(cosh x ) - ( ~ + " + ~ ~ )  

(3.45) 
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G2n+1;2m+l(~)  = [ m !  n !  r ( m  f ho+ 1)T(n + ho+ l)]l''(~osh x ) - ( ~ + " + ~ ~ + ' )  

(-l)'+"-"(sinh x ) 2 L + n - m  

'? I !  ( m  - I ) ! ( n  - m  + l ) ! r ( h o + m  - 1 +  1)' 
(3.46) 

the other matrix-elements being zero. It is readily verified that the results (3.45) and 
(3.46) are equivalent to the expressions (3.40) and (3.41) respectively, confirming the 
equivalence of the two completely different techniques outlined. 

4. Generalised transformation coefficients for para-Bose states 

In this section we investigate the possible generalisations of the particular one- 
parameter real homogeneous linear Bogoliubov transformation of para-Bose operators 
a and a+, to linear transformations containing supplementary degrees of freedom. As a 
first extension we consider the generalised (real) linear transformation which includes 
the existence of a11 independent constant term. Such a transformation has been studied 
in the Bose case by Aronson et a1 (1974) and Witschel (1975). They proved that the 
operator exp S' with 

x/2)(a +2 - a') - y ( U +  - a )  (4 Y E R) (4.1) 

b f  = es'a+ ePS' = ua++ vu + A ,  (4.2) 

U = cosh x ,  v = sinh x ,  A = - ( y / x ) ( l  -exp x ) .  (4.3) 

SI=-( 

generates the transformation 

b = es'a e-S'= ua +va++A,  

where 

In the para-Bose case, however, these formulae are no longer valid, and it is even 
impossible to find a new operator analogous to S' for which (4.2) can hold. The reader 
may convince himself of the validity of this statement by taking into account that, for 
para-Bose operators a and at ,  no operator-function T(a,  a+)  different from the trivial 
unit- or zero-operator can be found, for which the commutators [T(a ,  a+), a ]  and 
[T(a,  a+), a'] are both c numbers, unless [a, a'] is a c number itself, which is only the 
case in the pure Bose situation. 

As a second extension, the Bogoliubov transformation (3.1)-(3.2) can be general- 
ised to a complex homogeneous linear transformation (Tikochinsky 1978) 

b = Aa + pa', b' = A *a+ + * a  (A, P E @). (4.4) 
It is easy to verify that implementing the commutator relations (3.4) on the transformed 
operators b and b+ results in the condition 

/A I' - IP I' = 1, (4.5) 
which is the analogue of the real-case condition (3S):Furthermore it turns out that, in 
contrast to the previous generalisation, we are now able to construct an operator by 
which the transformation (4.4) is generated. Therefore, the operator S of (3.6) is first 
continued to a complex form, while maintaining the anti-Hermiticity property. This 
leads us in a unique way to the operator 

(4.6) 
Furthermore, it is shown in the Appendix that this operator gives rise to the following 

S, = - (~ /2) (a+ '  e'' -a' e-i' ) = -s+ ( x  E R, #J E [0,27r[). 
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transformation properties for a and a+: 

esca e-Sc = cosh xu + ei' sinh xu', 

esca+ eeSc = cosh xa++e-" sinh xu. 
(4.7) 

The right-hand sides of (4.7) do not yet exhibit the forms prescribed by (4.4), and 
therefore supplementary degrees of freedom are introduced by making use of the 
relations 

where H denotes the Hamiltonian (2.2). It follows immediately that 
e-l(uH+IL)a el(uH++L) - e sc = ela cosh xu +e"'+"' sinh xu+,  

(4.9) 
sinh xu, eSc e-I(aH+$' + I(UH+IL) e-Sc = cosh -I + a e  

showing that the right-hand sides correspond to (4.4) with 

A = elu cosh x, p = sinh x, (4.10) 

where A and ,U satisfy the condition (4.5). Note, however, that A and p are independent 
of 3. This irrelevant arbitrariness clearly expresses the possibility of fixing at con- 
venience the phase factor of the vacuum expectation value of the transformation 
operator, since 

(4.1 1) 

and since ho(Ol exp S,/O)b reduces to +1 when x = 0. According to the convention of 
Tikochinsky (1978) we require that the phase factor in (4.11) is unity, which thus 
corresponds to the particular choice $ = -aho. Consequently we can write 

b(o\ eSc e-l(oH+IL' lo>, = e- l ( rho+G) b(ol e s c / O ) h o ,  

9 (4.12) e+~(aH++) = e * ~ a N  

N being the number operator defined in (2.9). 
The para-Bose transformation coefficients associated with (4.9) are then given by 

(4.13) 

Both techniques outlined in 8 3 can again be invoked to calculate these coefficients 
explicitly. Indeed, again defining functions Hzn,zm(x) and H z ~ + I , z ~ + I ( x )  as in (3.9) and 
(3.10), Rashid's method now leads to the recursion relations 

2 n A H z n  ,z m (X ) = H2n - 1,2 m - 1 (x - pH2n -2 .2  m (x 1, (4.14) 

2mAHzn,zm(x) = HZn-l,zm-l(X) + FC*H2n ,2m-2(X) ,  (4.15) 

2 ( n + h 0)  A HZ n + 1,2 m + 1 (x 1 = HZ n ,2 m (x ) - FHZ n - 1,2 m + 1 ( x  1 7 (4.16) 

2(m +hO)AH2n+l,tm+l(X) =Hzn,2m(x) +p*H2n+1,2m--l(X), (4.17) 

Gk, [ (x )  = ho(kl eSc e-luNll)ho. 

which are the analogues of (3.15)-(3.18). 'The equalities (3.21)-(3.24) here become 
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and they lead together with (4.13) to the basic result 

H o ; o ( x )  = (cosh X ) - ~ O / A  

After calculations similar to those in 9 3.1, we finally obtain 

G 2 , ; 2 m ( ~ ) =  (m!n!r(m +ho)r(n +ho))1'2jA(-hoh-(m+n) 
min(m,n) ( - l ) n - k F n - k p  *""*: 
F0 k ! (m - k )  ! (n - k ) !  r(ho + k )  ' 

G 2 , + l ; Z m + 1 ( x )  = (m! n !  r ( m  + ho+ l)r(n +ho+ 1))1'21h I-hoh-(m+ncl) 
min(m.n) (- l ) n - k F  n-kF * m - k  

x c  
k=O k ! (m - k ) !  (n - k ) !  r ( h o  + k + 1) * 

(4.18) 

(4.19) 

Also, Kelemen's method can again be applied to the present problem. The crucial 
factorisation formula which replaces (3.44) is now given by 
eSc e-iuN - - exp[-$ ei' tanh exp[-$ In cosh x ( u ' u  + ua')] 

x exp[$ ePi' tanh xu'] exp[-$ia(a+a + aa'--2ho)]. (4.20) 

It is then only a matter of straightforward calculation to retrieve with the help of (4.13) 
and (2.18)-(2.19) the results (4.18)-(4.19). As a special case we obtain, by setting ho = 
in (4.18) and (4.19), generalised Bose-transformation coefficients in the form 

This equation is equivalent to a previously published result (Tikochinsky 1978) which 
has been obtained by expansion of the Bose number states in terms of coherent Bose 
states. 

Appendix 

To prove (4.7) we start from the equalities 

a (-sJ = (-s,)u + x ei'u +, a +(-s,) = (-s,)u + + x e-"a, 

which are an immediate consequence of (4.6) and (2.5)-(2.6). Next we know the 
operator product a(-S,)" to be of the general form 

a (-S,)" = f,U + gnu+, (A2) 
where f ,  and g,  are unknown functions of S,, x and 4. By use of (Al) ,  a system of 
recursion relations for f n  and g ,  can be derived, i.e. 

f , ,  = -Scf f l - l  + x  e-i'g,,-l, 

g,  = -S,g,-, + x  ei'ffl-l, 
(n 3 1) 

from which, by combination, we also find that 
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Looking for the solutions of (A3) which satisfy the initial conditions 

f o  = 1, f 1 =  - s c ,  go = 0, g l  = x eim, 

we arrive with the help of standard techniques at the result 

f, =&-S,+x)" +( -s, -x)"] ,  I g,  = +eim[(-S, + x ) "  - (-sC - x ) " ] .  
( n  BO) 
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Substituting (A5) in (A2) it follows that 

a e-Sc = e-'' cosh xu +e-'' eim sinh xu+, (-46) 
from which the first equality of (4.7) is immediately recovered. Asimilar reasoning then 
leads also to the second equality. 

References 

Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover) 
Aronson E B, Malkin I A and Man'ko V I 1974 Lett. Nuooo Cim. 11 44-6 
Bogoliubov N N 1947 J. Phys. USSR 11 23-9 
- 1958a Sou. Phys.-JETP 7 41-4 
- 1958b Nuooo Cim. 7 794-805 
Bogoliubov N N, Logunov A A and Todorov I T  1975 Introduction to Axiomatic Quantum Field Theory (New 

Jordan T F, Mukunda N and Pepper S V 1963 J. Math. Phys. 4 1089-95 
Kamefuchi S and Takahashi Y 1962 Nucl. Phys. 36 177-206 
Kelemen A 1975 Z. Phys. A 274 109-11 
Rashid M A 1975 J. Math. Phys. 16 378-80 
Sharma J K, Mehta C L and Sudarshan E C G 1978 J. Math. Phys. 19 2089-93 
Tanabe K 1973 J. Math. Phys. 14 618-22 
Tikochinsky Y 1978 J. Math. Phys. 19 270-6 
Witschel W 1975 Z. Phys. B 21 313-8 

York: Benjamin) p 540 


